

Abstracts

Mode conversion and design consideration of integrated nonradiative dielectric (NRD) components and discontinuities

F. Boone and K. Wu. "Mode conversion and design consideration of integrated nonradiative dielectric (NRD) components and discontinuities." 2000 Transactions on Microwave Theory and Techniques 48.4 (Apr. 2000, Part I [T-MTT]): 482-492.

In this paper, a class of nonradiative dielectric (NRD)-guide discontinuities is studied toward the establishment of design rules of NRD-guide circuits and components for millimeter-wave applications. A mode-matching technique with a multimodal transverse resonance condition is formulated to derive a generalized scattering matrix that allows accounting for effects of higher order modes and intermode coupling. Transmission properties of an NRD structure featuring a multilayered dielectric in cross section are presented. Mode conversion and power transfer among principal NRD-guide modes are, in particular, characterized for design consideration of NRD-guide components and circuits. New sets of easy-to-use design curves are introduced, thereby allowing practitioners to choose appropriate dielectric materials and NRD-guide topologies. Equivalent-circuit models are extracted from the generalized S-matrix for some basic and practically useful discontinuities involved in the design of almost every NRD-guide component, which include open ends, junctions, steps, and gaps. Calculated results of the selected structures are found to be in a good agreement with measurements. Dispersion diagrams of periodic NRD structures are also given in this paper.

[Return to main document.](#)

Click on title for a complete paper.